Material Data Sheet No. 4021 March 2004 Edition

Nicrofer 5621 hMoW is a nickel-chromium-molybdenum alloy containing tungsten and extremely low carbon and silicon contents.

Nicrofer 5621 hMoW is characterized by:

- outstanding resistance to a wide range of corrosive media, under oxidizing and reducing conditions
- excellent resistance to pitting, crevice corrosion, and stress-corrosion cracking.

Country	Material designation					Specification				
National standards	acoignation	Chemical composition	Tube ar seamless	nd pipe welded	Sheet and plate	Rod and bar	Strip	Wire	Forgings	Pipe Fittings
D DIN VdTÜV	WNr. 2.4602 NiCr21Mo14W	17744 [479] ¹⁾	17751	17751	17750 [479] ¹⁾	17752 [479] ¹⁾		17753 [479] ¹⁾		
F AFNOR										
UK BS EN										
USA ASTM ASME ASME Code Case	UNS N06022		B 622 SB-622 2226, N-621	B 619/626 SB-619/626 2226, N-621	B 575 SB-575 2226, N-621	B 574* SB-574* 2226, N-621	B 575 SB-575 2226, N-621		B 564 SB-564 2226, N-621	B 366 SB-366 2226, N-621
ISO	NiCr21Mo14W3									
*rod only			¹⁾ not necessarily	y applicable to p	roduct forms fror	n ThyssenKrupp	VDM manufactu	ire		

Designation and standards

Table 1 – Designation and standards

Chemical composition

	Ni	Cr	Fe	С	Mn	Si	Мо	W	Со	V	Р	S
min.	bal.	20.0	2.0				12.5	2.5				
max.	udi.	22.5	6.0	0.010	0.50	0.08	14.5	3.5	2.5	0.35	0.025	0.015
Some compositional limits of other specifications may yary slightly												

Some compositional limits of other specifications may vary slightly.

Table 2 – Chemical composition (wt.-%), according to DIN 17744

Physical	Physical properties					Density Melting	range		g/cm³ −1400 ° C	0.314 lb/in. ³ 2470–2550° F	
Temperati	ure (T)	Specific he	eat	Thermal conductivity		Electrical resistivity		Modulus of elasticity		Coefficient of thermal expansion between room temperature and T	
°C	°F	J kg K	Btu Ib °F	W mK	Btu in. ft² h °F	$\mu \Omega \text{cm}$	$\frac{\Omega \text{ circ mil}}{\text{ft}}$	kN mm ²	10³ ksi	$\frac{10^{-6}}{K}$	<u>10⁻⁶</u> °F
0	32	402	0.096					207	30.0		
20	68	406	0.097	9.4	65	114	686	206	29.9		
93	200		0.101	11.0	76		734	203	29.4		6.9
100	212	423		11.1	77	123		202	29.3	12.4	
200	392	444		13.4	93	124		197	28.6	12.4	
204	400		0.106	13.6	94		746	196	28.4		6.9
300	572	460		15.5	107	125		190	27.6	12.5	
316	600		0.110	16.0	111		753	190	27.6		7.0
400	752	476		17.5	121	126		185	26.2	13.1	
427	800		0.114	18.9	131		759	183	26.2		7.4
500	932	495		19.5	135	127		178	25.8	13.7	
538	1000		0.117	20.2	140		767	177	25.7		7.7
600	1112	514		21.3	148	128		173	25.1	14.3	
649	1200		0.125	22.5	156		774	171	24.8		8.1
700	1292	533		23.2	160	129		167	24.2	14.9	
760	1400							163	23.6		8.5
800	1472							159	23.1	15.5	
871	1600							154	22.3		8.8
900	1652							150	21.8	15.8	
982	1800							145	21.0		9.0
1000	1832							143	20.7	16.2	

Physical propertie

Table 3 – Typical physical properties at room temperature and elevated temperatures.

Mechanical properties

The following minimum values at room and elevated temperatures apply to longitudinal and, where applicable, transverse specimens in the solution-treated condition and indicated size ranges. Specified properties of material outside these size ranges are subject to special enquiry.

Product	Dimensions		Yield strength R _{p0.2}		Yield strength R _{p1.0}		Tensile strength R _m		Elongation A_{50}	Brinell hardness
	mm	inches	N/mm ²	ksi	N/mm ²	ksi	N/mm ²	ksi	%	HB
Sheet & plate	\leq 50	\leq 2.0								240 max.
Strip	≤ 3.0	≤ 0.120	310	45	335	49	690	100	45	(For information
Rod	\leq 90	\leq 3.5								only)

Table 4 – Minimum mechanical properties at room temperature.

Thickness		ASTM	Average Grain Diameter		
mm	inches	Grain Size	μm	inches	
≤ 3 .2	≤ 0.125	3.0 or finer	127	.0050	
> 3.2	> 0.125	1.5 or finer	214	.0084	

Table 5 – Grain size for solution annealed sheet and strip.

Temperature		Yield strength, Rp0.2		Yield strength, Rp1.0		
°C	°F	N/mm ²	ksi	N/mm ²	ksi	
100	212	270	39	290	42	
200	392	225	33	245	36	
300	572	195	28	215	31	
400	752	175	25	195	28	

Table 6 – Minimum mechanical properties at elevated temperatures for sheet & plate (thickness: \leq 50 mm), strip (thickness: \leq 3.0 mm) and rod (diameter: \leq 90 mm) according to VdTÜV data sheet 479.

ISO V-notch impact toughness

 $\begin{array}{l} \mbox{Average values at RT:} \\ \mbox{longitudinal/transverse} &\geq 150 \mbox{ J/cm}^2 \\ \mbox{Average values at -196 °C (-320 °F):} \\ \mbox{longitudinal/transverse} &\geq 120 \mbox{ J/cm}^2 \\ \end{array}$

One of the reasons primarily why nickel-base alloys are selected is for their performance under corrosive conditions. Though sometimes underestimated, characteristic design data frequently also plays an important role in selecting a particular alloy. As Fig. 1 shows, $R_{p0.2}$ yield strength data for Nicrofer 5621 hMoW is higher than that of Nicrofer 5716 hMoW. This allows for a reduction in wall thickness which may result in a more cost-effective design.

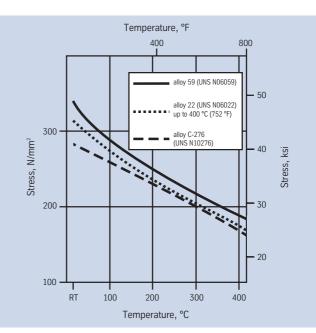


Fig. $1 - R_{p0.2}$ yield strength for Nicrofer 5621 hMoW in comparison with other similar alloys.

Metallurgical structure

Nicrofer 5621 hMoW has a face-centered cubic structure.

Corrosion resistance

The chemical composition of Nicrofer 5621 hMoW has been designed to give it outstanding corrosion resistance in as wide a range of media as possible, both oxidizing and reducing. The high chromiurn content of the alloy makes it particularly suitable for oxidizing conditions, including wet chlorine gas, hypochlorite solutions or oxidizing acids. It is remarkably resistant to localized attack by halide ions, even under severe conditions of low pH and high temperatures. It resists attack in media contaminated by oxidizing chlorides such as ferric chloride or cupric chloride.

Nicrofer 5621 hMoW is also resistant to many reducing media. As a result it can be used for equipment in polyvalent chemical plant where widely varying conditions may be encountered. The very low carbon content of Nicrofer 5621 hMoW, together with its balanced composition, reduce the tendency to formation of grain-boundary precipitates in the heat-affected zone during welding, thus making it suitable in the as-welded condition for many applications in the chemical process industry.

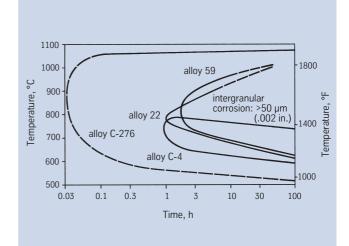


Fig. 2 – Time-temperature-sensitization (TTS) diagrams of nickelchromium-molybdenum alloys tested according to ASTM G-28 A.

Alloy	Normal range of corrosion rates in mm/a accord ASTM G-28 A	ing to ASTM G-28 B
Nicrofer 5923 hMo – alloy 59	0.6 - 1.0	0.08 - 0.15
Nicrofer 5621 hMoW – alloy 22	0.8 - 1.2	0.10 - 0.15
Nicrofer 5716 hMoW – alloy C-276	4.0 - 9.2	0.80 - 1.20

Table 7 – Comparison of typical corrosion rates in ASTM G-28 A and B standardized corrosion tests.

Alloy	СРТ	ССТ
Nicrofer 5923 hMo – alloy 59	> 120 °C / > 248 °F*	110 °C / 230 °F
Nicrofer 5621 hMoW – alloy 22	120 °C / 248 °F	105 °C / 221 °F
Nicrofer 5716 hMoW – alloy C-276	110 °C / 230 °F	105 °C / 221 °F

*Above 120 °C the "Green Death" solution chemically breaks down.

Table 8 – Critical pitting temperature (CPT) and crevice corrosion temperature (CCT) in 'Green Death' test solution. (11.4% $H_2SO_4 + 1.2$ % HCl + 1% $CuCl_2 + 1$ % $FeCl_3 \times 6$ H_2O after repeatedly heating for 24 hours using 5 °C (9 °F) temperature increments).

Applications

The versatile nature of Nicrofer 5621 hMoW combined with its excellent mechanical properties mean that it can be used in a wide variety of applications, including:

- organic syntheses
- flue gas desulphurization
- electrolytic galvanizing
- plate heat exchangers
- fine chemicals production
- incineration plants
- pharmaceutical intermediates
- combustion-resistant alloy for high pressure oxygen applications

Fabrication and heat treatment

Nicrofer 5621 hMoW can readily be hot and cold worked and machined.

Heating

It is very important that the workpiece be clean and free from any contaminant before and during heating.

Nicrofer 5621 hMoW may become embrittled if heated in the presence of contaminants such as sulphur, phosphorus, lead and other low-melting-point metals. Sources of contamination include marking and temperature-indicating paints and crayons, lubricating grease and fluids, and fuels. Fuels must be low in sulphur; e. g. natural and liquefied petroleum gases should contain less than 0.1 % by mass and town gas 0.25 g/m³ maximum of sulphur. Fuel oils containing no more than 0.5 % by mass of sulphor are satisfactory.

The furnace atmosphere should be neutral to slightly reducing and must not fluctuate between oxidising and reducing. Flame impingement on the metal must be avoided.

Hot working

Nicrofer 5621 hMoW may be hot-worked in the range 1100 to 900 °C (2010 to 1650 °F). Cooling should be by water quenching or fast air cooling.

Annealing is recommended after hot working to ensure maximum corrosion resistance.

For hot working, the material may be charged into the furnace at maximum working temperature.

Cold working

For cold working the material should be in the annealed condition. Nicrofer 5621 hMoW has a higher work-hardening rate than austenitic stainless steels. This should be taken into account when selecting forming equipment.

Interstage annealing may be necessary with high degrees of cold forming. After cold working with more than 15% deformation solution annealing is required before use.

Heat treatment

Solution heat treatment should be carried out in the temperature range 1100 to 1400 °C (2010 to 2085 °F), preferably at about 1120 °C (2050 °F).

Water quenching or rapid air cooling for thicknesses above 1.5 mm (0.06 in.) is recommended and is essential for maximum corrosion resistance.

For any thermal treatment the material should be charged into the furnace at maximum working temperature. Also for any thermal treatment operation the precautions concerning cleanliness mentioned earlier under 'Heating' must be observed.

Descaling and pickling

Oxides of Nicrofer 5621 hMoW and discoloration adjacent to welds are more adherent than on stainless steels. Grinding with very fine abrasive belts or discs is recommended. Care should be taken to prevent tarnishing.

Before pickling which may be performed in a nitric/hydroflouric acid mixture with proper control of pickling time and temperature, the surface oxide layer must be broken up by abrasive blasting or by carefully performed grinding or by pretreatment in a fused salt bath.

Machining

Nicrofer 5621 hMoW should be machined in the solution-treated condition. As the alloy exhibits a high work-hardening rate only low cutting speeds should be used compared with lowalloyed standard austenitic stainless steels. Tools should be engaged at all times. An adequate depth of cut is important in order to cut below the previously formed work-hardened zone.

Welding

When welding nickel alloys, the following instructions should be adhered to:

Workplace

The workplace should be in a separate location, well away from areas where carbon steel fabrication takes place. Maximum cleanliness and avoidance of draughts are paramount.

Auxiliaries, clothing

Clean fine leather gloves and clean working clothes should be used.

Tools and machinery

Tools used for nickel alloys and stainless steels must not be used for other materials. Brushes should be made of stainless material. Fabricating and working machinery such as shears, presses or rollers should be fitted with means (felt, cardboard, plastic sheet) of avoiding contamination of the metal with ferrous particles, which can be pressed into the surface and thus damage the metal and may then constitute sites particularly prone to corrosion.

Cleaning

Cleaning of the base metal in the weld area (both sides) and of the filler metal (e. g. welding rod) should be carried out with acetone.

Trichlorethylene (TRI), perchlorethylene (PER), and carbon tetrachloride (TETRA) must not be used.

Edge preparation

This should preferably be done by mechanical means, i. e., turning, milling or planing; abraisive water jet or plasma cutting is also possible. However, in the latter case the cut edge (the face to be welded) must be finished off cleanly. Careful grinding without overheating is permissible.

Included angle

The different physical characteristics of nickel alloys and special stainless steels compared with carbon steel generally manifest themselves in lower thermal conductivity and higher rate of thermal expansion. This should be allowed for by means of, among other things, wider root gaps or openings (1-3 mm), while larger included angles $(60-70^\circ)$, as shown in Fig. 3, should be used for individual butt joints owing to the viscous nature of the molten weld metal and to counteract the pronounced shrinkage tendency.

Striking the arc

The arc should only be struck in the weld area, i. e., on the faces to be welded or on a run-out piece. Striking marks lead to corrosion.

Welding process

Nicrofer 5621 hMoW can be joined to itself and to many other metals by conventional welding processes. These include GTAW (TIG), plasma arc, GMAW (MIG/MAG and MAG-Tandem) and SMAW (MMA). Pulsed arc welding is the preferred technique. For the MAG processes the use of a multi-component shielding gas (Ar+He+H₂+CO₂) is recommended.

For welding, Nicrofer 5621 hMoW should be in the annealed condition and be free from scale, grease and markings. When welding the root, care should be taken to achieve best-quality root backing (argon 99.99), so that the weld is free from oxides after welding the root. Any heat tint should be removed preferably by brushing with a stainless steel wire brush while the weld metal is still hot.

Filler metal

For the gas-shielded welding processes, the following filler metals are recommended:

Bare electrodes:	Nicrofer S 5923 – FM 59 UNS N06059 AWS A5.14: ERNiCrMo-13 SG-NiCr23Mo16 (WNr. 2.4607)
Covered electrodes:	UNS W86059 AWS A5.11: ENiCrMo-13 EL-NiCr22Mo16 (WNr. 2.4609)
For overlay welding b	y the electro-slag method (RES):
Weld strip:	Nicrofer B 5923 – WS 59 UNS N06059 AWS A5.14: ERNiCrMo-13

UP-NiCr23Mo16 (W.-Nr. 2.4607)

Welding parameters and influences (heat input)

Care should be taken that the work is performed with a deliberately chosen, low heat input as indicated in Table 10 by way of example. Use of the stringer bead technique should be aimed at. Interpass temperature should be kept below 150 °C (300 °F).

The welding parameters should be monitored as a matter of principle.

The heat input Q may be calculated as follows:

$$Q = \frac{U \times I \times 60}{v \times 1000} (kJ/cm) \qquad \begin{array}{l} U = arc \ voltage, \ volts \\ I = welding \ current, \ amps \\ v = welding \ speed, \ cm/min. \end{array}$$

Consultation with ThyssenKrupp VDM's Welding Laboratory is recommended.

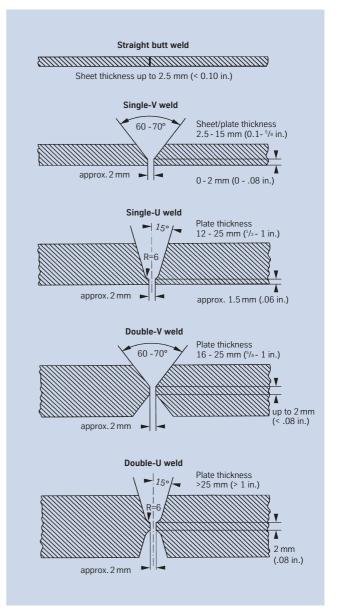


Fig. 3 – Edge preparation for welding of nickel alloys and special stainless steels.

Sheet/ plate thick-	Welding process	Filler meta Diameter		Welding pa Root pass			e and	Welding speed	Flux/ shielding gas	Plasma- gas rate	Plasma- nozzle diameter
ness mm		mm	m/min.	A	V	A	V	cm/min.	rate I/min.	l/min.	mm
3.0	Manual GTAW	2.0		90	10	110-120	11	10-15	Ar W3 ¹⁾ 8-10		
6.0	Manual GTAW	2.0-2.4		100-110	10	120-130	12	10-15	Ar W3 ¹⁾ 8-10		
8.0	Manual GTAW	2.4		110-120	11	130-140	12	10-15	Ar W3 ¹⁾ 8-10		
10.0	Manual GTAW	2.4		110-120	11	130-140	12	10-15	Ar W3 ¹⁾ 8-10		
3.0	Autom. GTAW	1.2	0.5	manual		150	10	25	Ar W3 ¹⁾ 15-20		
5.0	Autom. GTAW	1.2	0.5	manual		150	10	25	Ar W3 ¹⁾ 15-20		
2.0	Hot wire GTAW	1.0	0.3			180	10	80	Ar W3 ¹⁾ 15-20		
10.0	Hot wire GTAW	1.2	0.45	manual		250	12	40	Ar W3 ¹⁾ 15-20		
4.0	Plasma arc	1.2	0.5	165	25			25	Ar W3 ¹⁾ 30	Ar W3 ¹⁾ 3.0	3.2
6.0	Plasma arc	1.2	0.5	190-200	25			25	Ar W3 ¹⁾ 30	Ar W3 ¹⁾ 3.5	3.2
8.0	MIG/MAG GMAW	1.0	approx. 8	GTAW		130-140	23 – 27	24-30	MAG ²⁾ MIG: argon 18–20		
10.0	MIG/MAG GMAW	1.2	approx. 5	GTAW		130-150	23 – 27	20-26	MAG ²⁾ MIG: argon 18–20		
6.0	SMAW	2.5		40-70	approx. 21	40-70	approx. 21				
8.0	SMAW	2.5–3.25		40-70	approx. 21	70-100	aprrox. 22				
16.0	SMAW	4.0				90-130	approx. 22				

¹⁾ Argon or argon + max. 3 % hydrogen
²⁾ For MAG welding use of the shielding gas Cronigon He30S or Argomag-Ni, for example, is recommended. In all gas-shielded welding operations, ensure adequate back shielding. These figures are only a guide and are intended to facilitate setting of the welding machines.

Table 9 – Welding parameters (guide values).

Welding process	Heat input per unit length kJ/cm	Welding process	Heat input per unit length kJ/cm
GTAW, manual, fully mechanized	max. 8	GMAW, MIG/MAG, manual, fully mechanised	max. 11
Hot wire GTAW	max. 6	SMAW, manual metal arc (MMA)	max. 7
Plasma arc	max. 10		

Table 10 – Heat input per unit length (guide values).

Postweld treatment

(brushing, pickling and thermal treatments)

Brushing with a stainless steel wire brush immediately after welding, i.e., while the metal is still hot generally results in removal of heat tint and produces the desired surface condition without additional pickling.

Pickling, if required or prescribed, however, would generally be the last operation performed on the weldment. Also refer to the information on 'Descaling and pickling'.

Neither pre- nor postweld thermal treatments are required.

Availability

Nicrofer 5621 hMoW is available in the following standard product forms:

Sheet & plate

(for cut-to-length availability, refer to strip)

Conditions:

hot or cold rolled (hr, cr), thermally treated and pickled

Thickness mm	hr/cr	Width ¹⁾ mm	Length ¹⁾ mm
1.10 - < 1.50	Cr	2000	8000
1.50 - < 3.00	Cr	2500	8000
3.00 - < 7.50	cr/hr	2500	8000
7.50 - ≤ 25.00	hr	2500	8000 ²⁾
> 25.001)	hr	2500 ²⁾	80002)

inches		inches	inches	
0.043 - < 0.060	Cr	80	320	
0.060 - < 0.120	Cr	100	320	
0.120 - < 0.300	cr/hr	100	320	
0.300 - ≤ 1.000	hr	100	320 ²⁾	
> 1.0001)	hr	1002)	320 ²⁾	
¹⁾ other sizes subject to special enquiry				

²⁾ depending on piece weight

Discs and rings Conditions: hot rolled or forged, thermally treated, descaled or pickled or machined

Product	Weight kg	Thickness mm	0. D. ¹⁾ mm	I. D. ¹⁾ mm
Disc	≤ 10000	≤ 300	≤ 3000	
Ring	≤ 3000	≤ 200	≤ 2500	on request

	lbs	inches	inches	inches	
Disc	≤ 22000	≤ 12	≤ 120		
Ring	≤ 6600	≤ 8	≤ 100	on request	
I) ather sizes subject to ensuin					

¹⁾ other sizes subject to special enquiry

Rod & bar

Conditions: forged, rolled, drawn, thermally treated, descaled or pickled, machined, peeled or ground

Product	Forged ¹⁾ mm	Rolled ¹⁾ mm	Drawn ¹⁾ mm
Rod (o. d.)	≤ 600	8 - 60	12 – 50
Bar, square (a)	40 - 600	15 – 280	not standard
Bar, flat (a x b)	(40 – 80) x (200 – 600)	(5 – 20) x (120 – 600)	(10 – 20) x (30 – 80)
Bar, hexagonal (s)	40 - 80	13 – 41	≤ 50

	inches	inches	inches	
Rod (o. d.)	≤ 24	$5/_{16} - 2^{3}/_{8}$	¹ / ₂ - 2	
Bar, square (a)	1 ⁵ / ₈ - 24	$^{10}/_{16} - 11$	not standard	
Bar, flat (a x b)	(1 ⁵ / ₈ - 3 ¹ / ₈)	$({}^{3}/_{16} - {}^{3}/_{4})$	(³ / ₈ - ³ / ₄)	
	Х	Х	Х	
	(8 – 24)	(4 ³ / ₄ - 24)	(1 ¹ / ₄ - 3 ¹ / ₈)	
Bar, hexagonal (s)	$1^{5}/_{8} - 3^{1}/_{8}$	$^{1}/_{2} - 1^{5}/_{8}$	≤ 2	
1) allow sizes and a sublicity of the state of a state of the state of				

¹⁾ other sizes and conditions subject to special enquiry

Forgings

Shapes other than discs, rings, rod and bar are subject to special enquiry. Flanges and hollow shafts may be available up to a piece weight of 10 t.

Strip¹⁾

Conditions:

cold rolled,

thermally treated and pickled or bright annealed²⁾

Thickness mm	Width mm	Coil I.D. mm			
0.04 - ≤ 0.10	$4 - 200^{3)}$	300	400		
> 0.10 - ≤ 0.20	$4 - 350^{3}$	300	400	500	
> 0.20 - ≤ 0.25	$4-700^{4)}$		400	500	600
> 0.25 - ≤ 0.60	$6-700^{4)}$		400	500	600
> 0.60 - ≤ 1.0	$8-700^{4)}$		400	500	600
> 1.0 - ≤ 2.0	$15-700^{4)}$		400	500	600
$> 2.0 - \le 3.0 (3.5)^{2}$	$25-700^{4)}$		400	500	600

inches	inches	inches			
$0.0008 - \le 0.004$	$0.16 - 8^{3}$	12	16		
> 0.004 - ≤ 0.008	$0.16 - 14^{3}$	12	16	20	
> 0.008 - ≤ 0.010	$0.16 - 28^{4}$		16	20	24
> 0.010 - ≤ 0.024	0.24 - 284)		16	20	24
> 0.024 - ≤ 0.040	0.32 - 284)		16	20	24
> 0.040 - ≤ 0.080	$0.60 - 28^{40}$		16	20	24
$\begin{array}{rl} > 0.080 & - \leq 0.120^{2)} \\ & \leq 0.140^{2)} \end{array}$	1.0 - 28 ⁴⁾		16	20	24

 9 Cut-to-length available in lengths from 250 to 4000 mm (10 to 158 in.) 2 Maximum thickness: bright annealed – 3 mm (0.120 in.),

cold rolled only - 3.5 mm (0.140 in.)

³⁾Wider widths up to 730 mm (29 in.) subject to special enquiry

⁴⁾Wider widths subject to special enquiry

Wire

Conditions: bright drawn, ¹/₄ hard to hard, bright annealed

Dimensions:

0.01 - 12.0 mm (0.0004 - 0.47 in.) diameter, in coils, pay-off packs, on spools and spiders

Welding filler metals

Suitable welding rods, wire, strip electrodes and electrode core wire are available in all standard sizes.

Seamless tube and pipe

Using ThyssenKrupp VDM cast materials seamless tubes and pipes are produced and available from DMV STAINLESS SAS, Tour Neptune, F-92086 Paris, La Défense Cedex (Fax: +33-1-4796 8141; Tel.: +33-1-4796 8140; E-mail: dmv-hq@dmv-stainless.com)

Welded tube and pipe

Welded tubes and pipes are obtainable from qualified manufacturers using ThyssenKrupp VDM semi-fabricated products.

Technical publications

The following publications also referring to Nicrofer 5621 hMoW-alloy 22 may be obtained from ThyssenKrupp VDM GmbH:

U. Heubner, et al.:

Nickel alloys and high-alloy special stainless steels; expert verlag, 3rd rev. edition 2003

U. Heubner, M. Köhler:

Das Zeit - Temperatur - Ausscheidungs- und das Zeit - Temperatur - Sensibilisierungs - Verhalten von hochkorrosionsbeständigen Nickel - Chrom - Molybdän -Legierungen;

Werkstoffe und Korrosion 43 (1992), pp. 181-190

The information contained in this data sheet is based on results of research and development work available at the time of printing and does not provide any guarantee of particular characteristics or fit. ThyssenKrupp VDM reserves the right to make changes without notice. The data sheet has been compiled to the best knowledge of ThyssenKrupp VDM and is given without any liability on the part of ThyssenKrupp VDM. ThyssenKrupp VDM is only liable according to the terms of the sales contract and in particular to the General Conditions of Sales in case of any delivery from ThyssenKrupp VDM.

As updates of data sheets are not automatically send out, when issued, ThyssenKrupp VDM recommends to request the latest edition of required data sheets either by phone +49 (0) 23 92 55-2544, by fax +49 (0) 23 92 55-2596 or by E-mail under info@tks-vdm.thyssenkrupp.com.

Current issues of brochures and data sheets are also available in the internet under www.thyssenkruppvdm.de

March 2004 Edition.

This edition supersedes material data sheet no. 4021, dated May 1992

Nicrofer

ThyssenKrupp VDM GmbH

Plettenberger Strasse 2 58791 Werdohl P.O. Box 18 20 58778 Werdohl Germany Phone: +49 (23 92) 55-0 Fax: +49 (23 92) 55-22 17 E-Mail: info@tks-vdm.thyssenkrupp.com www.thyssenkruppvdm.de