

UBES

MEASUREMENTS/REGULATIONS

for Thermoelements

Servis i prodazba: Bitola Stara carsija: 047/203 330 Servis i prodazba: Skopje G.T.C. Bunjakovec 02/309 8 130

www.elektroluks.com.mk

www.electrolux.com.mk

Whether in research and development, in modern industrial production or even in the home – there is no area in which measurements, control processes and regulations are not required. Today, there are constantly increasing demands for data accuracy. At the same time, the operating conditions for measuring and regulation instruments are becoming consistently stricter, resulting from, for example, temperature change endurance or aggressive mediums.

Owing to their competent high-tech material, technical ceramics made by W. HALDENWANGER have a tradition of performing strikingly well in a variety of extreme applications. This brochure shows a selection of possible applications within measurement and control technology and delivers important information for engineering and construction of ceramic components.

Aluminium oxide ceramic is commonly used to protect delicate sensors which are in constant contact with, for example, corrosion and other damaging processing substances.

Plugs for control lines in nuclear power plants are subject to high radiation; here, synthetic materials were not, or only partially resistant. However, our Alsint 99.7 components are resistant. These Alsint 99.7 components are also faultless in radioactive contaminated areas. As a result of the extreme working temperatures, modern measuring methods such as DTA and DTC require ceramic sheath tubes and other ceramic components – specifically ultrapure Alsint 99.7 is used with DTA and DTC. Laser tubes made of Alsint 99.7 are also used to control the motion sequences of the He-Ne Lasers in harsh operating conditions.

Sheath tubes made of various ceramic materials such as Alsint 99.7, Pythagoras, Sillimantin 60 NG, Sillimantin 60, SiC, Halsic-R and Halsic-I, as well as insulation rods made of Alsint 99.7 or Pythagoras, are applied in the field of temperature measurement.

Within the processes of controlled engineering, corrosion and abrasion, in connection with high temperatures, can result in extreme operational demands which metallic regulation carrying capacities can not withstand. In such cases, Alsint 99.7 or Zirconia components ensure reliable operations.

Technical ceramics reveals its strengths when other materials have long failed to fulfil necessary requirements. The diversity of design and utilization are therefore nearly limitless.

CERAMIC SHEATH TUBES

ALSIN	T 99.7	PYTHA	GORAS	SILLIMANTIN 60	
Type C 799 according to DIN EN 60672 Al ₂ O ₃ -content 99.7 %		Type C 610 accordir Al ₂ O ₃ -content approx. 6	ng to DIN EN 60672 60 %, Alkali-content 3 %	Type C 530 according to DIN EN 6067 Al ₂ O ₃ -content 73 – 75 %	
Outer/Inner Outer/Inner Øin mm Øin mm		Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	
0.8 x 0.3	12.0 x 8.0	0.8 x 0.3	14.0 x 10.0	15×10	
1.3×0.7	12.7 x 8.9	1.3 x 0.7	15.0 x 10.0	20 x 15	
1.6 x 1.0	14.0 x 10.0	1.6 x 1.0	15.0 x 11.0	22×17	
1.8 x 1.2	15.0 x 10.0	1.8 x 1.2	16.0 x 12.0	24×19	
2.0 x 1.0	17.0 x 12.0	2.0 x 1.0	17.0 x 12.0	26 x 18	
2.7×1.7	17.0 x 13.0	2.7 x 1.7	17.0 x 13.0	28 x 22	
3.0×2.0	17.5 x 11.1	3.0 x 2.0	17.5 x 11.1	30 x 23	
4.0×2.0	20.0 x 15.0	4.0 x 2.0	20.0 x 15.0		
5.0 x 3.0	24.0 x 18.0	5.0 x 3.0	24.0 x 19.0		
6.0 x 4.0	25.4 x 19.1	6.0 x 4.0	25.4 x 19.1		
8.0×5.0	26.0 x 20.0	8.0 x 5.0	26.0 x 18.0		
9.0 x 6.0	28.0 x 22.0	9.0 x 6.0	26.0 x 20.0		
9.6 x 6.4	30.0 x 23.0	10.0 x 6.0	28.0 x 22.0		
10.0 x 6.0		10.0 x 7.0	30.0 x 23.0		
10.0 x 7.0		12.0 x 8.0			
max.length 3500 mm	depending on outer Ø	max. length 3500 mm	depending on outer Ø	max. length 3500 mm depending on outer Ø	

SILICON	CARBIDE	HALS	SIC-R	HALSIC-I	
fine and course structure, SiC-content approx. 70 and 90 %, clay-bound		According to I recrystallized SiC, S		According to DIN EN 12212, reaction- bound, Si-infiltrated SiC, SiC-concentration approx. 90 %, Si-free content ca.10 %	
Outer/Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	Outer / Inner Ø in mm	
17 x 12	30 x 23	20 x 10	34 x 24	20×13	
20 x 12	33 x 28	22 x 12	35 x 25	22×15	
20 x 15	35 x 27	25 x 15	38 x 25	25×18	
22 x 17	40 x 32	30 x 15	40 x 30	27 x 20	
24 x 19	45 x 25	30 x 20	45 x 35	30 x 20	
26 x 18	45 x 35	32 x 22	50 x 38	45 x 35	
26 x 20	50 x 25		NO. (0.0.) - (-0.0.)		
max.length 2000 mm	depending on outer Ø	max. length 2100 mm	depending on outer Ø	max. length 2100 mm depending on outer Ø	

Dimensions not included in the table can be custom made upon request.

All of the following tubes are available: both ends open, one end closed, both ends open with flange, one end closed with flange. Tolerances are in compliance with DIN 40 680. Customized tolerances upon request.

2-BORE AND 4-BORE INSULATION RODS

Tools available

Insulation rods made of Alsint 99.7 or Pythagoras are used to insulate inserted thermal wires. In accordance with DIN 43725, Pythagoras insulation rods can be heated to temperatures up to 2732 °F/1500 °C. For higher temperatures, we recommend Alsint 99.7 insulation rods.

	ALSINT 99.7 TYPE C 799						PYTHAGORAS TYPE C 610						
2-b	ore rods	Ž	l-bore rod	s	2	2-bore rod	S	82	4-bore rod	S			
(\odot	,	(° °)		(2	\odot			· · · ·				
*00/B0 0	00/80 00/80	* 0 Ø/B Ø	OØ/BØ	0.0/8.0	* 0 Ø/B Ø	OØBØ	00/80	*OØ/BØ	OØBØ	0 Ø/B Ø			
1.2 0.2 5 1.2 0.3 6 1.4 0.3 5 1.7 0.3 5 1.9 0.6 5 2.0 0.4 5 2.0 0.6 5 2.1 0.6 6 2.1 0.6 6 2.3 0.5 5 2.7 0.8 5 2.9 0.5 5 3.0 0.7 5 3.1 1.0 5 3.2 1.1 5 3.3 1.1 5 3.4 1.1 5 3.6 0.5 5 3.6 0.8 6 3.7 1.1 6 3.7 1.2 6 3.8 1.1 6 3.7 1.2 6 4.0 0.8 6 4.0 1.0 6 4.1 0.5 6 4.1 0.9 6 4.1 0.9 6 4.1 1.0 6 4.1 0.9 6 4.1 1.0 6 4.1 0.9 6 4.1 1.0 6 4.1 0.9 6 4.1 1.0 6 4.1 1.	.2 0.2 7.9 1.8 .2 1.6 8.0 2.0 .2 1.7 8.2 1.8 .2 1.8 8.2 2.5 .4 1.3 8.3 1.6 .5 1.5 8.4 2.9 .5 1.8 8.5 1.3 .5 1.9 8.7 2.5 .5 2.0 8.7 2.6 .7 1.1 8.8 1.5 .7 1.8 8.9 0.5 .8 1.4 8.9 2.5 .8 2.0 9.0 1.6 .9 1.0 9.1 2.5 .9 1.2 9.3 2.4 .9 1.2 9.3 2.4 .9 1.2 9.3 2.4 .9 1.2 9.3 2.4 .9 1.2 9.3 2.4 .9 1.2 9.3 2.4	1.5 0.3 1.7 0.4 2.3 0.5 2.4 0.6 2.6 0.6 2.7 0.5 2.7 0.7 2.8 0.7 2.9 0.7 3.2 0.7 3.3 0.8 3.5 0.9 3.6 0.7 3.6 1.1 3.8 0.8 3.8 1.0 3.9 0.7 4.0 1.0 4.0 1.1 4.1 0.7 4.1 0.8 4.2 0.7 4.2 0.8 4.2 1.2 4.3 0.7 4.3 0.8 4.3 1.2 4.5 1.3 4.6 1.0 4.7 0.7 4.8 0.8 4.8 1.0 4.7 0.7 4.8 0.8 4.8 1.0 4.8 1.0 5.0 1.1 5.0 1.2 5.1 1.0 5.2 1.2 5.5 1.2	5.5 1.3 5.6 1.0 5.6 1.3 5.6 1.5 6.7 1.2 5.8 1.2 5.8 1.5 5.9 1.5 6.0 1.3 6.0 1.4 6.1 1.8 6.2 1.7 6.4 1.2 6.4 1.6 6.5 1.7 6.6 1.5 6.6 2.0 6.7 1.0 6.7 1.9 7.0 1.5 7.8 2.0 7.9 1.5 7.8 2.0 7.9 1.5 8.0 2.3 8.3 1.7 8.3 1.8 8.3 2.3 8.4 1.9 8.4 2.2 8.5 1.5 8.6 1.9 8.6 2.0 8.6 1.9 8.6 2.0 8.8 1.2 8.8 1.5 8.8 1.5 8.8 1.5 8.8 1.5 8.8 1.5 8.8 1.5 8.8 1.5 8.8 1.5 8.8 1.5 8.9 2.8 9.9 2.8	10.0 1.8 10.0 3.1 10.2 2.7 10.3 2.3 10.5 1.1 10.5 1.5 10.7 2.5 11.6 2.5 11.7 3.7 11.8 3.5 11.8 3.8 11.9 3.9 12.6 3.6 12.9 4.1 13.3 3.1 13.3 3.5 14.2 3.6 14.3 3.5 15.8 3.8 16.9 4.6	1.1 0.3 1.2 0.2 1.2 0.3 1.4 0.3 1.5 0.4 1.6 0.3 1.8 0.6 1.9 0.6 2.1 0.6 3.4 0.8 3.5 1.1 3.8 0.8 3.8 0.9 3.9 0.9 3.9 1.2 4.2 1.3 4.2 1.6 4.3 1.2 4.4 0.9 4.4 1.0 4.5 1.6 4.6 1.6 4.7 1.4 4.7 1.7 4.9 1.6 4.9 1.7 4.9 1.8 5.1 1.2	5.1 1.5 5.1 1.9 5.2 1.7 5.2 1.9 5.4 1.8 5.4 1.9 5.5 0.9 5.5 1.1 5.6 1.8 5.6 1.8 5.6 1.8 5.7 1.9 5.9 1.0 6.0 1.5 6.0 1.5 6.3 1.8 6.4 0.9 6.4 1.4 6.5 1.9 6.5 1.9 6.6 1.6 6.7 1.9 6.8 1.5 6.8 1.7 6.9 1.0 6.0 1.5 6.1 1.6 6.2 1.6 6.3 1.6 6.4 1.4 6.5 1.9 6.5 1.9 6.6 1.9 6.7 1.9 6.8 1.9 6.9 1.0 6.9 1.0 6.0 1.5 6.1 1.0 6.1 1.0 6.2 1.0 6.3 1.1 6.4 1.4 6.5 1.9 6.5 1.9 6.7 1.9 6.8 1.9 6.9 1.0 6.9 1.0 6.0	8.5 2.5 8.7 2.3 9.0 2.0 9.1 2.4 9.2 2.8 9.4 2.9 9.7 2.7 9.7 3.7 9.8 3.7 9.9 3.9 10.2 2.7 10.2 3.8 10.3 3.2 10.4 3.0 10.4 3.8 10.5 3.0 10.6 3.5 10.7 2.5 10.7 3.7 10.9 1.5 11.0 3.0 11.5 3.3 11.7 4.0 11.9 1.1 12.0 3.9 12.8 4.5 13.0 2.4 14.1 4.5 14.2 4.5 16.3 4.8 17.7 4.0 18.3 4.1	1.5	4.9 1.1 4.9 1.4 5.1 1.2 5.2 1.1 6.2 1.3 6.3 1.0 5.3 1.1 5.3 1.2 6.4 1.1 6.5 1.2 5.5 1.5 6.6 1.5 6.7 1.2 6.8 1.6 6.7 1.2 6.0 1.6 6.1 1.7 6.2 1.6 6.1 1.7 6.2 1.6 6.1 1.7 6.2 1.6 6.1 1.7 6.2 1.6 6.3 1.0 6.7 1.8 7.3 1.5 7.3 1.9 7.4 1.5 7.8 1.7 7.8 2.3 7.9 2.2 8.0 2.4 8.0 2.4 8.0 2.5 8.1 1.7 8.1 1.8 8.1 1.7 8.1 1.8 8.1 1.7 8.1 1.8 8.1 1.7 8.1 1.8 8.1 1.9 8.2 1.6 8.3 1.2 8.4 1.5 8.5 1.5	8.7 2.2 8.8 2.5 9.1 2.5 9.2 2.1 9.3 2.8 9.4 1.8 9.4 3.0 9.5 1.5 9.8 1.1 9.8 1.4 10.0 2.4 10.0 3.4 11.0 3.6 11.0 3.6 11.1 3.7 11.2 3.8 11.5 3.3 11.8 3.5 12.5 3.0 12.5 3.8 13.0 3.5 13.2 3.6 13.2 4.0 13.4 3.4 14.2 4.0 14.8 3.7 15.0 3.6 15.8 4.5			

^{*} OØ = Outer diameter in mm

BØ = Bore diameter in mm

MULTI-BORE INSULATION RODS

Tools available

* 0Ø 1.5	6-00	e rods												
	(6)	6-00						re rods 10-bore rods						
	7	<u>.)</u>			6									
16	6×BØ	OØ	6×BØ	*oø	8×BØ	00	8×BØ	*00	10 x B Ø	OØ	10 x B (
4.0 4.4 5.0 6.0 8.0	0.25 0.75 1.00 1.10 1.20 1.20	1.5 4.0 4.5 5.1 6.0 7.5	0.25 1.10 1.10 1.20 1.10 1.20	4.2 4.8 6.0 6.4 7.5 12.7	0.75 0.80 0.55 1.00 0.80 2.10	4.0 4.5 5.0 6.0 7.0 12.0	0.75 0.80 0.60 1.00 0.80 2.00	5.3 5.5 5.7 6.0 7.0 8.0	0.40 0.80 0.65 0.75 1.10 0.70	5.0 5.2 5.4 5.6 6.5 7.5	0.40 0.80 0.65 0.75 1.10 0.70			
5-bore rods with centre bore 6-bore rods w						rith centre bore 7-bore rods with centre bore								
000				© • • • • • • • • • • • • • • • • • • •			©°°°							
*0Ø	5 x B Ø	OØ	5×BØ	*0Ø	6×BØ	OØ	6×BØ	*00	7×BØ	OØ	7×B (
2.7 4.5	0.35 0.5	2.6 4.3	0.35 0.5	2.1 4.9	0.4 0.55	2.0 4.6	0.4 0.55	2.0 3.2	0.25 0.3	1.9 3.0	0.25 0.3			
	יע-כ	ore rods w and 4 sm:	aller bores				7-2		ith centre b aller bores	lore				
*0Ø	CB Ø	4×BØ	00	CB Ø	4×BØ	*00	CBØ	6×BØ	0 Ø	CBØ	6×B			
3.0	0.9	0.30	2.8	0.9	0.50	3.7	1.8	0.45	3,5	1.7	0.45			
4.0 5.0	1.5 2.4	0.75 0.75	4.5 7.7	1.2 2.9	0.75 1.20	4.0 5.0	1.8 1.8	0.45 0.75	4.0 5.0	1.7 1.8	0.75 0.70			
8.5 9.0	4.0 3.2	0.80 1.15	8.0 9.2	3.7 4.0	0.80 1.10	11.0 13.3	4.3 4.4	2.10 2.40	10.4 12.5	4.0 4.1	2.00 2.30			
13-bore rods with centre bore and 12 smaller bores					Oval 2-bore rods									
		8	3 3											
*00	CBØ	12×BØ	OØ	CBØ	12×BØ	W		x BØ	W /	Н	x DØ			
8.6 9.6 9.6	4.4 2.1 2.1	0.3 1.2 1.1	7.7 9.0 9.0	4.1 1.9 2.0	0.3 1.2 1.1	3.0 4.5 7.5 11.5	/ 3.0 / 5.0	x 0.7 x 1.5 x 2.2 x 3.9	2.3 / 3.0 / 4.0 / 4.6 /	2.7	x 0.7 x 1.0 x 1.0 x 1.5			

B Ø = Bore diameter in mm

CB Ø = Centre bore diameter in mm

→ <u> </u> ←		4-bore insulation rods according to DIN 43725					1-bore insula according to	Wire Ø				
03W V	Outers (d ₂) in n		Bore∅ 3)inmm	Length in mm	Ø in mm	Outa (d ₁) in			Ø in mm			
_	5,5		1.2	205 275 380 560 770	≤ 0.8	4.0						
	8.5		1.5	1060 1460 2060	≤0.8	6.0	±03 4.0	5, 10, 25,	50 3.0			
		TABLE 1: ceramic sheath tubes DIN 43724										
A	DIN EN 60672	Outer ((d ₁) in m		L	ength (L) in mm		Thermal shock resistance	Permeability	Max. permissible continuous temp.			
		10	7	200, 270), 375, 530, 740	, 1030						
	C 610	15	11	530, 740	530, 740, 1030, 1430, 2030		mediumto good	gastight	2732 °F 1500 °C			
		24	19	530, 740), 1030, 1430							
	C 530	26	18	530, 740), 1030, 1430		very good	porous	2912°F/1600°C			
		10	6	200, 270	0, 375, 530				-9737000			
	C 799	15	10	530, 740), 1030		medium	gastight	2912 °F 1600 °C			
r		24	18	530, 740, 1030, 1430					700/00/26 - 100			

DESIGN

Unglazed. Admissible tolerance of the wall thickness is in compliance with DIN 40680 Part 1, degree of accuracy: Coarse. Admissible deflection is in compliance with DIN 40680 Part 2, degree of accuracy: Fine, with the following specifications: A straight rod, diameter 0.8 x (d1-2s), must be able to be inserted to the bottom of the sheath tube. The rounded bottom of the sheath tube uniformly becomes the cylindrical section of the sheath tube.

REQUIREMENTS

Thermal shock resistance:

No visible damage after test implementation.

Dimensional stability: Original straightness after test implementation.

Gastightness: No air is released during testing: only valid for the sheath tubes labelled gastight in Table 1.

TESTS

Thermal shock resistance:

The sheath tube is inserted with the closed end into a 40 mm internal diameter tube furnace at

a constant rate (Table 2). The furnace is heated to the maximum permissible continuous temperature of the sheath tube. The sheath tube must not come in contact with the tube furnace, therefore a vertical setup of the tube furnace is recommended. After a minimum of 20 minutes holding time, the sheath tube is removed at the same rate and is hung freely in order to cool in calm air.

TABLE 2							
Diameter d1 in m m	Insertion rate cm/min						
10	100						
15	50						
24 and 26	1						

Dimensional stability:

The sheath tube is horizontally clamped into the tube furnace used for thermal shock resistance testing and is then heated to the maximum permissible continuous temperature. This procedure lasts for 30 minutes.

Gastightness:

The sheath tube is exposed to an inner overpressure of 2 bar, and then submersed in water for one minute.

Note: The tests should be conducted in the abovementioned order. The thermal shock resistance tests and dimensional stability tests can be conducted simultaneously when the tube furnace is setup horizontally.

GUIDELINES

for the selection of sheath tube materials according to DIN 43724, Paragraph 7:

- Alkalis- and hydrofluoric acid-free gases up to 2732 °F / 1500 °C: Type C 610
- Contact with alkali vapours up to 2732 °F / 1500 °C: Type C 799
- Gases of all kinds, if inner tubes are gastight, up to 2912 °F / 1600 °C: Type C 530
- Melting glass up to 2732 °F / 1500 °C: Type C 799

(not general specifications; reference values only)

Servis i prodazba: Bitola Stara carsija: 047/203 330

Servis i prodazba: Skopje G.T.C. Bunjakovec: 02/309 8 103

TOLERANCES ACCORDING TO DIN 406:

NASCOLIA/MACOSOTANA	0.00			- to	vithout	Nominal length Accura cy (admissible deflection fair						
Nominal Ø or length in mm		a cy (admissit			No	minai lengt in mm	D.		medium			
oriengariiriiiii	CO	arse	me	medium		301111011		coarse	me	Jium :		
up to 4		0.4		0.15		up to	30	1.7		.15		
above 4 up to 6		0.6		0.20	above	30 up to	40	1.8		.20		
above 6 up to 8		0.7		0.25	above	40 up to	50	1.9		.25		
above 8 up to 10	±	0.8		0.30	above	50 up to	60	2.0		.30		
above 10 up to 13	±	1.0		0.35	above	60 up to	70	2.1		.35		
above 13 up to 16	±	1.2		0.40	above	70 up to	90	2.1		40		
above 16 up to 20	±	1.2		0.45	above	80 up to	90	2.2		45		
above 20 up to 25	±	1.5		0.60	above	90 up to	100	2.3		.50		
above 25 up to 30	±	1.5		0.55	above	100 up to	110	2.4		.55		
above 30 up to 35	±	2.0		0.60	above	110 up to	125	2.5		.65		
above 35 up to 40	±	2.0		0.65	above	125 up to	140	2.6		.70		
above 40 up to 45	±	2.0		0.70	above	140 up to	155	2.7		.80		
above 45 up to 50	±	2.5				above 166 up to 170 2.9				.85		
above 50 up to 55	±	2.5		0.90	above	170 up to	185	3.0		.90		
above 55 up to 60	±	2.5	±	1.00	above	185 up to	200	3.1		.00		
above 60 up to 70	±	3.0	±	1.20	above	200 up to	250	3.5		25		
above 70 up to 80	±	3.5	±	1.40	above	250 up to	300	3.9		.50		
above 80 up to 90	±	4.0		1.60	above	300 up to	350	4.3		.75		
above 90 up to 100	±	4.5	±	1.80	above	350 up to	400	4.7		.00		
above 100 up to 110	±	5.0	±	2.00	above	400 up to	450	5.1		.25		
above 110 up to 125 above 125 up to 140	±	6.5 6.0	±	2.20 2.50	above	450 up to 500 up to	500	5.5		.50		
	±		± .	2.80	above	600 up to	600 700	6.3		.00 .50		
	±	6.5 7.0	±	3.00	above above	700 up to	800	7.1 7.9		.00		
above 155 up to 170 above 170 up to 185	± ±	7.5	± ±	3.40	above	800 up to	900	8.7				
above 185 up to 200	Ť	8.0	±	3.90	above	900 up to	93 P (50 A) (1	9.5	4,50 5.00			
above 200 up to 250	±	9.0	±	4.20	above		1000	1.5 +0.8 % · I	0.5% - 1			
above 250 up to 300		10.0	7	4.60						0 /0 1		
above 300 up to 350		11.0	Ī	5.00	Please	contact us	for strict	ter tolerances.				
above 350 up to 400		12.0	- ±	5.50					Degree o	faccuracy		
above 400 up to 450		13.0	- +	6.10	Manufa	acturing prod	cess		coarse	medium		
above 450 up to 500		14.0	Ŧ	6.90	8	WED-0				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
above 600 up to 600		15.0	±	7.60				or parts with an	Common			
above 600 up to 700		16.0	±	200	envelop	pe size of 30) mm ar	id higher	application			
above 700 up to 800	±	17.5	±	9.00		0			4704			
above 800 up to 900	±	19.0	±	9.50	Extrude	ed for parts	with an	envelope size up to 30		Common		
above 900 up to 1000		20.0	±	10.00	mm, no	on-metered	pressed	l, metered sem i-moist		application		
above 1000	±	0.02 · d	±	0.01 · d	presser	d, metered o	try pres	sed, white machined	1	application		
Ассигасу	CO	агѕе	me	dium	1		40-4000		89.90	i.		
DIN EN 60672 Type	C 610	C 799	C 610	C 799								
Manufacturing processes									-			
Casted	•	•			-	1		fa	- 7			
Turned	•				- 9	m	977	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	m	7.		
Extruded envelope size		•			1 9	11/11	111	111141111	11311	//		
30 mm and higher					l,	ľ	•		-1			
Extruded envelope size						<u> </u>	eflection	on of a cylindrical form	ned part			
up to 30 mm					4							
Non-metered pressed					-	ľ			_			
Metered semi-moist pressed		•			_	1	+		_)			
hida ta mandi odani ana ana ani												
Metered dry pressed White machined				2.*			1 -	fa	_74-			

Special agreements are required. Customary manufacturing process

> Servis i prodazba: Skopje G.T.C. Bunjakovec: 02/309 8 103

Deflection of a non-cylindrical formed part

TUBES

FUSED SILICA ROLLERS

Long Service Life

High Performance

Flexibility SPECIALITIES

Servis i prodazba: Bitola Stara carsija: 047/203 330

Servis i prodazba: Skopje G.T.C. Bunjakovec: 02/309 8 103

www.elektroluks.com.mk www.electrolux.com.mk