MEASUREMENTS/RECULATIONS
for Thermoelements

Servis i prodazba: Bitola Stara carsija: 047/203 330

Servis i prodazba:
Skopje G.T.C. Bunjakovec
02/309 8130

Whether in research and development, in modern industrial production or even in the home - there is no area in which measurements, control processes and regulations are notrequired. Today, thereare constantly increasing demands for data accuracy. At the sametime, the operating conditions for measuring and regulation instruments are becoming consistently stricter, resulting from, for example, temperature change endurance or aggressive mediums.

Owing to their competent high-tech material, technical ceramics made by W. HALDENWANGER have a tradition of performing strikingly well in a variety of extreme applications. This brochure shows a selection of possible applications within measurement and control technology and delivers important information for engineering and construction of ceramic components.

Aluminium oxide ceramic is commonly used to protect delicate sensors which are in constant contact with, for example, corrosion and other damaging processing substances.

Plugs for control lines in nuclear power plants are subject to high radiation; here, synthetic materials were not, or only partially resistant. However, our Alsint 99.7 components are resistant. These Alsint 99.7 components are also fautless in radioactive contaminated areas. As a result of the extreme
working temperatures, modern measuring methods such as DTA and DTC require ceramic sheath tubes and other ceramic components - specifically ultrapure Alsint 99.7 is used with DTA and DTC. Laser tubes made of Alsint 99.7 are also used to control the motion sequences of the He-Ne Lasers in harsh operating conditions.

Sheath tubes made of various ceramic materials such as Alsint 99.7. Pythagoras, Sillimantin 60 NG , Sillimantin 60, $\mathrm{SiC}, \mathrm{Halsic}-\mathrm{R}$ and Halsic-I, as well as insulation rods made of Alsint 99.7 or Pythagoras, are applied in the field of temperature measurement.

Within the processes of controlled engineering, corrosion and abrasion, in connection with high temperatures, can result in extreme operational demands which metallic regulation carrying capacities can not withstand. In such cases, Alsint 99.7 or Zirconia components ensure reliable operations.

Technical ceramics reveals its strengths when other materials have long failed to fulfil necessary requirements. The diversity of design and utilization are therefore nearly limitless.

Елетиролукс

CERAMIC SHEATH TUBES

ALSINT 99.7		PYTHAGORAS		SILLIMANTIN 60
Type C 799 according to DIN EN 60672 $\mathrm{Al}_{2} \mathrm{O}_{3}$-content 99.7%		Type C 610 according to DIN EN 60672 $\mathrm{Al}_{2} \mathrm{O}_{3}$-content approx. 60%. Alkali-content 3%		Type C 530 aocording to DIN EN 60672 $\mathrm{Al}_{2} \mathrm{O}_{3}$-content $73-75 \%$
Outer/Inner \emptyset in mm	Outer / Inner \varnothing in mm			
0.8×0.3	12.0×8.0	0.8×0.3	14.0×10.0	15×10
1.3×0.7	12.7×8.9	1.3×0.7	15.0×10.0	20×15
1.6×1.0	14.0×10.0	1.6×1.0	15.0×11.0	22×17
1.8×1.2	15.0×10.0	1.8×1.2	16.0×12.0	24×19
2.0×1.0	17.0×12.0	2.0×1.0	17.0×12.0	26×18
2.7×1.7	17.0×13.0	2.7×1.7	17.0×13.0	28×22
3.0×2.0	17.5×11.1	3.0×2.0	17.5×11.1	30×23
4.0×2.0	20.0×15.0	4.0×2.0	20.0×15.0	
5.0×3.0	24.0×18.0	5.0×3.0	24.0×19.0	
6.0×4.0	25.4×19.1	6.0×4.0	25.4×19.1	
8.0×5.0	26.0×20.0	8.0×5.0	26.0×18.0	
9.0×6.0	28.0×22.0	9.0×6.0	26.0×20.0	
9.6×6.4	30.0×23.0	10.0×6.0	28.0×22.0	
10.0×6.0		10.0×7.0	30.0×23.0	
10.0×7.0		12.0×8.0		
max. length 3500 mm dependimg on outer \varnothing		max. length 3500 mm depending on outer \varnothing		max. length 3500 mm depending on outer \varnothing

SILICON CARBIDE				HALSIC-I
fine and course structure, Sic-content approx. 70 and 90%, clay-bound		Aocording to DIN EN 12212 recrystallized SiC. Sic-content $\geq 99 \%$		According to DIN EN 12212, reactionbound. Si-infiltrated Sic. Sic-concentration approx. 90%, Si-free content ca. 10%
Outer / Inner \emptyset in mm	Outer / Inner \emptyset in mm	Outer / Inner \emptyset in mm	Outer / Inner \varnothing in mm	Outer / Inner 6 in mm
17×12	30×23	20×10	34×24	20×13
20×12	33×28	22×12	35×25	22×15
20×15	35×27	25×15	38×25	25×18
22×17	40×32	30×15	40×30	27×20
24×19	45×25	30×20	45×35	30×20
26×18	45×35	32×22	50×38	45×35
26×20	50×25			
max. length 2000 mm depending on outer \varnothing		max. length 2100 mm depending on outer \varnothing		max. length 2100 mm dependimg on outer \varnothing

Dimensions not included in the table can be custom made upon request.
All of the following tubes are available: both ends open, one end closed, both ends open with flange, one end closed with flange. Tolerances are in compliance with DIN 40680 . Customized tolerances upon request.

Servis i prodazba:
Bitola Stara carsija:
047/203 330

Servis i prodazba:
Skopje G.T.C. Bunjakovec:
02/309 8130

2-BORE AND 4-BORE INSULATION RODS Tools available

Insulation rods made of ilsint 99.7 or Pythagoras are used to insulate inserted thermal wires. In accordance with DIN 43725, Pythagoras insulation rods can be heated to temperatures up to $2732^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$. For higher temperatures, we recommend , ilsint 99.7 insulation rods.

[^0][^1]Servis i prodazba:
Bitola Stara carsija:

MULTI-BORE INSULATION RODS

Tools available
1984

ALSINT 99.7 TYPE C 799 / PYTHAGORAS TYPE C 610															
6-bore rods				8-bore rods					10-bore rods						
				$\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$					$\left(\begin{array}{l}00 \\ 0 \\ 000\end{array}\right)$						
* $0 \varnothing$	$6 \times \mathrm{B} \emptyset$	$0 \emptyset$	$6 \times \mathrm{B} \emptyset$	* $0 \varnothing$	$8 \times B \emptyset$	$0 \emptyset$		$8 \times \mathrm{B} \emptyset$		* $0 \varnothing$	$10 \times \mathrm{B} 0$		$0 \varnothing$		$10 \times \mathrm{B}$ ¢
1.5	0.25	1.5	0.25	4.2	0.75	4.0		0.75		5.3	0.40		5.0		0.40
4.0	0.75	4.0	1.10	4.8	0.80	4.5		0.80		5.5	0.80		5.2		0.80
4.4	1.00	4.5	1.10	6.0	0.55	5.0		0.60		5.7	0.65		5.4		0.65
5.0	1.10	5.1	1.20	6.4	1.00	6.0		1.00		6.0	0.75		5.6		0.75
6.0	1.20	6.0	1.10	7.5	0.80	7.0		0.80		7.0	1.10		6.5		1.10
8.0	1.20	7.5	1.20	12.7	2.10	12.0		2.00		8.0	0.70		7.5		0.70
5-bore rods with centre bore				6-bore rods with centre bore					7-bore rods with centre bore						
$\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$				$\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$											
* Oø	$5 \times \mathrm{B} \emptyset$	$0 \emptyset$	$5 \times \mathrm{B} \varnothing$	* $0 \varnothing$	$6 \times B \emptyset$	$0 \varnothing$		$6 \times \mathrm{B} \emptyset$		* $0 \varnothing$	$7 \times \mathrm{B} \emptyset$		00		$7 \times \mathrm{B} \emptyset$
2.7	0.35	2.6	0.35	2.1	0.4	2.0		0.4		2.0	0.25		1.9		0.25
4.5	0.5	4.3	0.5	4.9	0.55	4.6		0.55		3.2	0.3		3.0		0.3
9.4	1.0	8.7	1.0	5.4	1.1	5.0		1.1		17.0	4.0		16.0		3.7
5-bore rods with centre bore and 4 smaller bores						7-bore rods with centre bore and 6 smaller bores									
						* Oø CB \varnothing							CB \varnothing	$6 \times \mathrm{B} \emptyset$	
* 00	$C B \emptyset$	$4 \times \mathrm{B} \emptyset$	$0 \emptyset$	$C B \emptyset$	$4 \times B \emptyset$					$6 \times \mathrm{B} \emptyset$	0 O				
3.0	0.9	0.30	2.8	0.9	0.50	3.7		1.8		0.45	3.5		1.7		0.45
4.0	1.5	0.75	4.5	1.2	0.75	4.0		1.8		0.45	4.0		1.7		0.75
5.0	2.4	0.75	7.7	2.9	1.20	5.0		1.8		0.75	5.0		1.8		0.70
8.5	4.0	0.80	8.0	3.7	0.80	11.0		4.3		2.10	10.4		4.0		2.00
9.0	3.2	1.15	9.2	4.0	1.10	13.3		4.4		2.40	12.5		4.1		2.30
13-bore rods with centre bore and 12 smaller bores						Oval 2-bore rods									
						W	$\frac{\mathrm{H}}{0}$								
* 0 ø	CB \emptyset	$12 \times \mathrm{B}$ ¢	$0 \emptyset$	$C B \emptyset$	$12 \times \mathrm{B}$ ¢		1	H	x	B \varnothing	W	1	H	\times	D \emptyset
8.6	4.4	0.3	7.7	4.1	0.3	3.0	f	2.0	x	0.7	2.3	,	1.4	x	0.7
9.6	2.1	1.2	9.0	1.9	1.2	4.5	f	3.0	x	1.5	3.0	f	2.0	x	1.0
9.6	2.1	1.1	9.0	2.0	1.1	7.5)	5.0	x	2.2	4.0	f	2.7	x	1.0
						11.5	f	7.2	\times	3.9	4.6)	3.3	\times	1.5
						12.0	f	8.0	\times	4.0	11.5	f	6.3	\times	4.2

[^2]$B \not \varnothing=$ Bore diameter in mm

Servis i prodazba:
 Bitola Stara carsija: 047/203 330

Servis i prodazba:
Skopje G.T.C. Bunjakovec:
02/309 8103

DIN MEASUREMENTS

Measurements for cera mic sheath tubes and insulation components for thermoelements according to DIN 43724 and DIN 43725

DESIGN

Unglazed. Admissible tolerance of the wall thickress is in compliance with DIN 40680 Part 1. degree of accuracy: Coarse. Admissible deflection is incompliance with DINN 40680 Part 2. degree of accuracy: Fine, with the following specifications: A straight rod, diameter $0.8 \times$ (d1-2s), must be able to be inserted to the bottom of the sheath tube. The munded bottom of the sheath tube uniformly beoomes the cy lindrical section of the sheath tube.

REQUIREMENTS

Thermal shock resistance:
No visible damage after test implementation.
Dimensional sta bility: Original straightress after test implementation.
Gastightness: No air is released during
testing: only valid for the sheath tubes labelled gastight in Table 1.

TESTS

Thermal shock resistance:
The sheath tube is inserted with the closed end into a 40 mm internal diameter tube fumace at
a constant rate (Table 2). The furnace is heated to the maximum permissible continuous temperature of the sheath tube. The sheath tube must not come in contact with the tube furnace, therefore a vertical setup of the tube furnace is recommended. After a minimumof 20 minutes holding time, the sheath tube is removed at the same rate and is hung freely in order to cool in calm air.

TABIE 2	
Diameter d1 in m m	Insertion rate $\mathrm{cm} / \mathrm{min}$
10	100
15	50
24 and 26	1

Dimensional stability:
The sheath tube is horizontally clamped into the tube furnace used for thermal shock resistance testing and is then heated to the maximumpermissiblecontinuous temperature. This prooedure lasts for 30 minutes.

Gastightness:
The sheath tube is exposed to an inner overpessure of 2 bar, and then submersed in water for one minute.
Note: The tests should be conducted in the abovementioned order. The thermal shook resistance tests and dimensional stability tests can be conducted simutaneously when the tube furnace is setup horizontally.

GUIDELINES

for the selection of sheath tube materials according to DIN 43724, Paragraph 7:

- Alkalis-and hydrofluoric acid-free gases up to $2732^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$: Type C 610
- Contact with alkali vapours up to $2732^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$: Type C 799
- Gases of all kinds, if inner tubes are gastight, up to $2912^{\circ} \mathrm{F} / 1600^{\circ} \mathrm{C}$: Type C 530
- Melting glass up to $2732^{\circ} \mathrm{F} / 1500^{\circ} \mathrm{C}$: Type C 799
protgenerat specilistrons; referencevalues ardy

Servis i prodazba: Bitola Stara carsjija: 047/203 330

Servis i prodazba: Skopje G.T.C. Bunjakovec: 02/309 8103

(a) Електролукс

TOLERANCES ACCORDING TO DIN 406:

1984

Servis i prodazba:
Bitola Stara carsija: 047/203 330

Servis i prodazba: Skopje G.T.C. Bunjakovec: 02/309 8103

Longrollerse Life

High Palsic ${ }^{\text {Prmance }}$

Fleyibilityities

Servis i prodazba:
Bitola Stara carsija:

Servis i prodazba:
Skopje G.T.C. Bunjakovec: 02/309 8103

[^0]: * $O \not \emptyset=$ Outer diameter in mm

[^1]: $B \not \varnothing=$ Bore chiameter in mm

[^2]: * $O \varnothing=$ Outer diameter in $m m$

